광고
광고
광고
광고
광고
광고
광고
광고
광고
로고

[수익 가속화의 법칙: AGI로 이어진다] 수익 가속의 법칙은 다름 아닌 작가, 발명가, 미래학자인 레이 커즈와일에 의해 개념화되었다. 그는 각각의 새로운 세대의 기술이 이전 세대를 기반으로 구축되어 혁신의 잠재력을 기하급수적으로 증가시킨다고 주장한다. 레이 커즈와일은 일론 머스크와 데미스 하사비스가 공유한 최근 의견과 일치하는 일정인 2029년까지 AGI를 달성할 것이라고 예측한다.

https://www.unite.ai/law-of-accelerating-returns/

운영자 | 기사입력 2023/06/23 [00:00]

[수익 가속화의 법칙: AGI로 이어진다] 수익 가속의 법칙은 다름 아닌 작가, 발명가, 미래학자인 레이 커즈와일에 의해 개념화되었다. 그는 각각의 새로운 세대의 기술이 이전 세대를 기반으로 구축되어 혁신의 잠재력을 기하급수적으로 증가시킨다고 주장한다. 레이 커즈와일은 일론 머스크와 데미스 하사비스가 공유한 최근 의견과 일치하는 일정인 2029년까지 AGI를 달성할 것이라고 예측한다.

https://www.unite.ai/law-of-accelerating-returns/

운영자 | 입력 : 2023/06/23 [00:00]

일론 머스크는 최근 인터뷰에서 AGI(인공 일반 지능)가 언제 등장할 것으로 예상하느냐는 질문에 "3~6"이라고 답했다. Google DeepMind CEO 데미스 하사비스는 월스트리트 저널의 Future of Everything Festival에서 언급한 것처럼 AGI "몇 년아마도 10년 이내에올 것이라고 믿고 있다.

 

이러한 수치는 AGI 100년은 아니더라도 종종 10년이 걸린다고 믿는 대부분의 AI 산업 전문가와 비교할 때 낙관적인 것으로 간주된다이 비관주의 중 일부는 결국 잘못된 것으로 판명될 더 짧은 일정에 전념하는 것에 대한 두려움에서 비롯된다결국 1956년 다트머스 여름 리서치 프로젝트(Dartmouth Summer Research Project)에서 인간만큼 지능적인 기계가 한 세대(25안에 존재할 것이라는 기대와 함께 "인공지능"이라는 용어가 만들어지고 분야로 시작되었다.

 

AI의 대부로 알려진 제프리 힌튼과 같은 다른 사람들은 약간 더 미묘한 견해를 가지고 있다. “최근까지만 해도 범용 AI가 등장하려면 20년에서 50년 정도 걸릴 것이라고 생각했다그리고 지금은 20년 또는 그 이하가 될 수 있다고 생각한다.”

AI 산업은 오늘날의 LLM(대형 언어 모델)을 지원하는 심층 강화 학습 알고리즘의 급속한 개발 덕분에 지난 몇 년 동안 빠르게 발전했다.

 

그럼에도 불구하고 이러한 모든 혁신은 챗봇 및 언어 번역과 같은 좁은 AI 응용 프로그램으로 이어졌다이것은 인간과 비슷한 수준으로 다양한 작업에 걸쳐 지식을 이해하고배우고적용하는 능력을 가진 일종의 인공지능인 AGI와 비교된다.

많은 사람들에게 AGI에 대한 누락된 링크는 도달할 수 없는 것처럼 보이지만 "수익 가속화의 법칙"을 믿는 소수에게는 결국 AGI를 구축하는 것이 불가피하다.

 

수익 가속의 법칙은 다름 아닌 작가발명가미래학자인 레이 커즈와일에 의해 개념화되었다광학문자인식(OCR), 텍스트음성합성음성인식 기술 등의 분야에 종사하고 있으며인공지능 책 '마음을 만드는 법'을 펴낸 뒤 구글에 채용됐다이 획기적인 책은 궁극적인 생각하는 기계를 만들기 위해 인간의 두뇌를 리버스 엔지니어링하기 위해 인간의 두뇌를 이해해야 하는 방법을 보여준다이 책은 AI의 미래에 매우 중요한 역할을 했기 때문에 에릭 슈미트는 이 중요한 책을 다 읽은 후 레이 커즈와일을 AI 프로젝트 작업에 고용했다.

 

가장 관련성이 높은 레이 커즈와일 책은 다름 아닌 "특이점은 가깝다"이다. 2005년에 출판된 이래로 그 예측은 지난 20년 동안의 기술 성장을 반영했다가장 중요한 것은 레이 커즈와일은 일론 머스크와 데미스 하사비스가 공유한 최근 의견과 일치하는 일정인 2029년까지 AGI를 달성할 것이라고 예측한다.

 

법칙은 다양한 진화 시스템(기술의 성장을 포함하되 이에 국한되지 않음)의 변화율이 기하급수적으로 증가하는 경향이 있다고 가정한다.

기술 성장의 맥락에서 법은 기술 혁신의 속도 자체가 가속화되고 있기 때문에 미래에 빠른 기술 발전을 기대할 수 있음을 의미한다레이 커즈와일(Ray Kurzweil)은 각각의 새로운 세대의 기술이 이전 세대를 기반으로 구축되어 혁신의 잠재력을 기하급수적으로 증가시킨다고 주장한다.

 

이 법칙은 현재 생성 AI가 주도하고 있는 가속 기술의 폭발적인 성장이 칩 제조 및 3D프린팅과 같은 다른 수렴 기하급수적 기술의 다른 물결을 어떻게 탈 것인지를 보여준다이러한 융합은 AI가 지금까지 구축된 가장 강력한 애플리케이션이 되는 투석기이다.

 

2001년 레이 커즈와일은 다음과 같이 예측했다:

기술의 역사를 분석하면 기술 변화는 상식적인 "직관적 선형관점과 달리 기하급수적이라는 것을 알 수 있다따라서 우리는 21세기에 100년의 진보를 경험하지 않을 것이다그것은 (오늘날의 속도로) 20,000년의 진보에 가까울 것이다칩 속도 및 비용 효율성과 같은 "수익"도 기하급수적으로 증가한다기하 급수적인 성장 속도에도 기하 급수적인 성장이 있다수십 년 안에 기계 지능이 인간 지능을 능가하여 특이점(Singularity)으로 이어질 것이다기술 변화가 너무 빠르고 심오해서 인류 역사 구조의 단절을 나타낸다그 의미에는 생물학적 지능과 비생물학적 지능의 융합불멸의 소프트웨어 기반 인간빛의 속도로 우주에서 바깥쪽으로 확장되는 초고차원 지능이 포함된다.

 

이러한 기술적 폭발은 주어진 칩의 트랜지스터 수가 대략 2년마다 두 배가 될 것이라고 예측한 무어의 법칙에 기인한다이것은 다른 기술 혁신과 결합되어 수익 가속화의 법칙이 번성하고 있음을 보여준다다음은 이것이 인류의 미래에 의미하는 바에 대한 레이 커즈와일의 관찰이다:

진화는 한 단계의 진화 진행에서 나온 더 유능한 방법이 다음 단계를 만드는 데 사용된다는 점에서 긍정적인 피드백을 적용한다그 결과,

진화 과정의 진행률은 시간이 지남에 따라 기하급수적으로 증가한다시간이 지남에 따라 진화 과정에 포함된 정보의 "순서"(정보가 진화에서 생존인 목적에 얼마나 잘 맞는지에 대한 척도)가 증가한다.

위 관찰의 상관 관계는 진화 프로세스의 "수익"(프로세스의 속도비용 효율성 또는 전반적인 "파워")이 시간이 지남에 따라 기하급수적으로 증가한다는 것이다.

또 다른 포지티브 피드백 루프에서 특정 진화 프로세스(계산)가 더 효과적(비용 효율적)이 되면 해당 프로세스의 추가 진행을 위해 더 많은 리소스가 배치된다이로 인해 두 번째 수준의 기하급수적 증가가 발생한다(기하급수적 증가율 자체가 기하급수적으로 증가함).

생물학적 진화는 그러한 진화 과정 중 하나이다.

기술 진화는 또 다른 진화 과정이다실제로 최초의 기술 창조 종의 출현은 기술의 새로운 진화 과정을 초래했다따라서 기술진화는 생물학적 진화의 파생물이자 연속물이다.

특정 패러다임(문제를 해결하기 위한 방법 또는 접근 방식예를 들어 보다 강력한 컴퓨터를 만들기 위한 접근 방식으로 집적 회로의 트랜지스터 축소)은 해당 방법이 잠재력을 소진할 때까지 기하급수적으로 성장한다이것이 발생하면 패러다임 전환(접근 방식의 근본적인 변화)이 발생하여 기하급수적인 성장을 계속할 수 있다.

 

독자는 레이 커즈와일의 블로그를 읽고 이 기하급수적 성장의 의미와 그것이 블로그가 처음 게시된 이후 개인적으로 경험한 것과 어떻게 일치하고 다른지 숙고해야 한다.

수익 가속의 법칙은 무어의 법칙만큼 대중적이지는 않지만 처음 출판되었을 때와 마찬가지로 오늘날에도 관련성이 있다.

 
AGI, 인공 일반 지능, 수익 가속의 법칙, 특이점, 레이 커즈와일 관련기사목록
PHOTO
1/6
광고
광고
광고
광고
광고
광고
많이 본 기사
AiMindbot뉴스 많이 본 기사