광고
광고
광고
광고
광고
광고
광고
광고
광고
로고

[Simuli Inc. 사업 계획] Simuli의 주된 약속은 효율적인 하드웨어와 혁신적인 소프트웨어를 갖춘 강력하고 윤리적이며 유용한 인공 일반 지능 제품군을 구축하는 것이다. 이 회사의 솔루션은 자본 비용을 줄이면서 규모에 맞게 가속화하기 위해 자율 컴퓨팅 에코시스템에 중점을 둔다.

운영자 | 기사입력 2023/10/15 [00:00]

[Simuli Inc. 사업 계획] Simuli의 주된 약속은 효율적인 하드웨어와 혁신적인 소프트웨어를 갖춘 강력하고 윤리적이며 유용한 인공 일반 지능 제품군을 구축하는 것이다. 이 회사의 솔루션은 자본 비용을 줄이면서 규모에 맞게 가속화하기 위해 자율 컴퓨팅 에코시스템에 중점을 둔다.

운영자 | 입력 : 2023/10/15 [00:00]

 

요약

-Simuli의 초지능 플랫폼은 확장 가능하고 비용 효율적인 인간 수준의 AI를 제공한다.

-새로운 칩은 무어의 법칙을 확장하기 위해 "트랜지스터가 더 열심히 작동"하도록 만든다.

-데이터와 함께 성장하는 지능형 소프트웨어

-학제간 "올스타"

-하이퍼스케일 인공지능 영역에 적용 가능-이상 탐지, 최적화 시스템, 자율 제어, 사이버 보안 등

투자 필요 종자 – 150만 달러

시리즈 A 투자 – 210만 달러

5년차 순수익 – 1 1500만 달러

5년차 순이익 – 4,680만 달러

 

회사 하이라이트

사명 선언문

Simuli로서 우리의 주된 약속은 효율적인 하드웨어와 혁신적인 소프트웨어를 갖춘 강력하고 윤리적이며 유용한 인공 일반 지능 제품군을 구축하는 것이다. 당사의 솔루션은 자본 비용을 줄이면서 규모에 맞게 가속화하기 위해 자율 컴퓨팅 에코시스템에 중점을 둔다.

Simuli의 임무는 기존 가속기 및 Simuli의 사내 가속기를 위한 신뢰할 수 있는 맞춤형 컴파일러를 제공하여 하드웨어에 완전히 최적화된 확장 가능한 새로운 인공지능 소프트웨어를 만드는 것이다.

 

비즈니스 세부정보

Rachel St.Clair Binoy Syed는 회사의 현재 주주이다. 그들은 현재 장기적인 성공 비전을 공유하는 투자자 또는 투자 그룹으로부터 제안을 요청하고 있다는 점에 유의해야 한다.

 

Simuli는 전 세계적으로 고객에게 서비스를 제공할 수 있는 능력을 갖춘 플로리다주 마이애미에 위치하고 있으며 선호한다. 장기 계획은 창립자가 해당 지역에 대해 잘 알고 있고 위치가 제공하는 도달 범위로 인해 운영 기반으로 유지하는 것이다. 또한 세금 및 인재에 대한 비즈니스 환경이 발전함에 따라 매우 매력적인 글로벌 위치가 되었다.

 

제품 및 서비스

Simuli의 궁극적인 목표는 일반인공지능AGI 솔루션 제공업체가 되는 것이다. 이를 위해 팀은 인간 수준의 AI를 위해 완전히 최적화된 하드웨어와 소프트웨어를 공동 설계하여 대규모로 패키징하는 초지능 플랫폼에서 작업하고 있다. 초지능 플랫폼은 처음부터 초지능 소프트웨어 제품군에 통합되는 세 가지 새로운 소프트웨어 솔루션으로 시작하여 설계되었다. 기존 가속기에 대한 사용자 정의 컴파일러를 사용하는 하드웨어 구성 요소가 플랫폼에 추가된다. 마지막으로 최대 성능을 위해 두 개의 새로운 가속기인 NDPU MPMC가 추가되었다. 이 제품 코호트는 초지능 플랫폼을 완전히 모듈화할 수 있게 한다. , 기존 시스템에 적용하거나 완전히 대체할 수 있다.

 

NDPU – 비선형 분산 처리

유닛 - 하이퍼벡터를 사용한 연관 학습에 최적화된 PCIe ASIC 보드

● 정보가 압축, 계산 및 칩에 저장됨

● 하이퍼스케일 정보처리 및 인공지능에 사용

● 하드웨어 비용과 에너지 소비를 크게 줄인다.

 

MPMC메타그래프 패턴 매칭 칩– 군집 인텔리전스로 그래프 컴퓨팅을 가속화하는 맞춤형 프로세서

● 정보는 메가 스케일에 대해 계층적으로 저장된다.

● 빠른 정보 검색

● 시스템의 데이터 및 수명과 함께 성장

 

핵심 팀

 

 

기존 인원

Simuli는 여러 유형의 계약 전문가를 고용한다.

● 하드웨어 엔지니어

● 수학 프로그래머

● 컴파일러 엔지니어

● 소프트웨어 엔지니어

 

고문

Simuli는 다음 개인으로부터 멘토링을 받는다.

L. Andrew Coward – 전자 제어 시스템 설계 및 인지 아키텍처 전문가

● 여러 수학자

● 여러 IP 전문가

● 여러 비즈니스 개발 및 자금 조달 전문가

 

파트너십 및 제휴

잠재적 파트너

SingularityNet – 설립

TrueAGI - 설립

TSMC– 설립

HP, Cisco, NASA, Siemens, ZF, Micron, Cerebras, Graphcore, SambaNova, AWS – 진행 중

Dell, IBM, Intel, ARM, Groq, Hanson Robotics

 

잠재적 동맹

Nvidia

AMD

Tesla

MS

Amazon

Google

 

외부 업체와의 R&D

● 대학 – 1단계 및 2단계

Deep Mind & Open AI & Boston Dynamics

DOE/DOD

● 개발자 생태계

 

시장 조사

클라이언트 리서치

우리의 주요 고객은 HP, Microsoft, Cisco, Dell, IBM 등과 같은 기업과 Tesla, Rivien, AMP Robotics, DOD 등과 같은 자율 제어 엔터티를 사용하는 대규모 AI이다. 2차 고객은 이상 감지 및 최적화/추천 시스템을 사용하는 비즈니스를 대상으로 한다. 이러한 회사 중 일부에는 Meta, Amazon, Netflix Google이 포함된다.

 

고객 요구의 증거

기업의 40% AI 개발에 대해 부정적인 ROI를 보고했으며 평균 ROI 1.3%이다. AI 채택에 100만 달러를 지출할 때마다 해당 회사는 실제 수익으로 13,000달러만 받는다. AI의 컴퓨팅 수요가 증가함에 따라 비용도 증가하여 이러한 격차가 더욱 줄어들고 있다. 또한 개발 예산의 40% Simuli의 플랫폼에서 필요하지 않은 데이터 엔지니어링에 사용된다. 더 나쁜 것은 AI 이니셔티브의 72%가 확장 제약으로 인해 대규모 배포를 하지 않았다는 것이다.

Amazon Tesla와 같은 업계 리더는 데이터 및 컴퓨팅 요구 사항이 기하급수적으로(그리고 포물선적으로) 확장됨에 따라 극도의 확장 제약에 직면해 있다. 당사의 플랫폼은 현재 솔루션의 에너지 및 비용 오버헤드 없이 현재 아키텍처에 쉽게 통합할 수 있는 솔루션을 제공한다.

 

자본 비용

기술 산업은 확장할 수 있는 자본 비용을 최소화하는 방법을 찾고 있다. 중형 플레이어는 확장할 자본 능력이 없기 때문에 어려움을 겪는다. 업계 리더들은 그들의 성장이 포물선 모양이기 때문에 어려움을 겪는다.

 

운영 비용 및 탄소배출량

에너지 소비 및 관련 비용은 플레이어가 규모에 맞게 혁신을 추진하는 데 큰 제약이 된다. 게다가 온실가스 배출량은 기술 산업이 인식되고 성장하는 방식의 중심이 되고 있다.

 

혁신

현재 AI 구현은 컴퓨팅 한계에 크게 제약을 받고 있으며 신경과학이나 수학 같은 핵심 영역의 한계로 인한 것이 아니다. 이로 인해 연구자들은 새로운 솔루션을 비용 효율적이고 대규모로 개발할 수 없다.

 

경쟁자 프로파일링

이상 감지, 추천 엔진 및 자율 제어 시스템을 위한 AI 소프트웨어 공간에는 많은 플레이어가 있다. 마찬가지로 AI 하드웨어에는 여러 플레이어가 있다.

신흥 플레이어로는 Avora, Splunk, Loom, Anodot, Tibco, Numenta, Algolux, Osaro, Shield AI, AMP Robotics, Optimizely, Evergage, Monetate, Sailthru, Graphcore, Sambanova, Cerebras, Brainchip, Mythic AI, Wave, Via, Thinci, Groq 등이 있다.

그러나 우리는 1) 하드웨어 아키텍처를 자체적으로 사용할 수 있도록 라이선스를 부여하고 2) 우리 소프트웨어가 하드웨어에서 효율적으로 실행되도록 컴파일러 커널을 사용자 지정하여 고객에게 더 나은 성능을 제공할 수 있기 때문에 하드웨어 경쟁업체를 공동 판매 파트너에게 기회로 보고 있다.

우리는 소프트웨어 경쟁업체를 가속화된 하드웨어 옵션으로 지원되는 기존 패키지의 모듈로 API를 추가할 수 있는 기회 고객으로 간주한다. 이를 수행할 수 있는 능력은 우리 플랫폼이 모듈식이기 때문에 기존 시스템에 추가할 수 있고 모든 클라이언트의 특정 요구 사항에 맞게 형식을 지정할 수 있다.

 

주요 "경쟁자"에는 다음이 포함된다.

Cisco, HPE, Dell, IBM, Tesla, Rivien, Waymo, Penske, Rolls Royce, AWS, Google, Nvidia, Intel, ARM, Salesforce, Siemens, Microsoft, Alphabet, Baidu, GM, Ford, Oracle, Deepmind, OpenAI, Qualcomm.

우리는 이러한 주요 업체를 우리 제품을 구매할 가능성이 가장 높은 주요 대상 고객으로 보고 있다.

Simuli의 장점은 공동 설계 및 공동 최적화된 소프트웨어와 모듈식 하드웨어의 혁신적인 통합에 의존하는 고유한 기술 솔루션이다. 우리의 이점은 비즈니스 및 학제간 기술 개발 분야의 숙련된 개인 팀에 의해 지원된다.

 

SWOT 분석

 

강점

● 기술 지식수학과 HW에 대한 Rachel, Ben 및 기술 팀과 같은 창립 멤버의 틈새 및 전문 지식은 우리의 부상과 발전의 핵심이다.

● 특화된 시장완전히 통합되고 최적화된 모듈식 제품을 개발하고 있다. 절실한 필요성이 있지만 3개 부문을 모두 해결할 수 있는 기존 솔루션은 거의 없다.

● 성장하는 산업산업은 기하급수적으로 성장하고 있으며 곧 둔화되지 않을 것이다.

● 낮은 간접비우리는 매우 낮은 간접비를 가지고 있으며 이를 계속 유지하려고 한다.

 

약점

● 제한된 자금현재 자금이 제한되어 있다.

순익을 내기 전에 세 가지 소프트웨어 솔루션과 하드웨어 프로토타입을 완료하려면 더 많은 것이 필요하다.

● 법무팀현재 강력한 사내 법률 고문이 없다. 그러나 우리는 곧 하나를 가질 계획이다.

 

위협

● 대규모 경쟁자– Intel Nvidia와 같이 침투에 큰 도전을 가할 수 있는 거대 기업이 있다. 우리의 완화책은 공유 이익을 촉진하기 위해 조기에 협력하는 것이다.

 

기회

● 상당한 관심 – OEM 및 정부 기관과 같은 잠재적인 파트너와의 초기 논의에서 솔루션 탐색에 대한 논의가 증가하고 있다.

● 공동 개발빅 데이터 AI에 대한 OEM용 제품 라인을 공동으로 개발할 수 있는지에 대한 높은 수준의 논의가 있다.

 

 

2021년 소프트웨어 산업 시장

이상           추천자           자율

$208천만  $177천만   $33

16% CAGR   33% CAGR   25% CAGR

 

총 시장, 71 8천만 달러  

2028년 소프트웨어 산업 시장

이상       추천자        자율

$110.5  $173.3   $133.4

 

총 시장, 41.72억 달러

 

주요 동인

-2025년까지 AI의 비즈니스 가치는 5조 달러가 될 것으로 예상된다.

-지난 5년간 AI 교육 비용 10배 증가

-기업들은 2022년에 AI를 주요 수익 동인으로 보고 있다/ 78%

-데이터 센터 배출량 50% 증가

 

Simuli의 수익 잠재력

 

접근 가능한 시장

 

우리의 철학은 상위 고객을 "계정" "설치"로 추구하는 것이며 본질적으로 "시장 점유율" 철학을 따르지 않는 것이다. 고급 애플리케이션, 미들웨어, 펌웨어 및 지적 재산 라이선싱을 판매한 집단적 팀 경험에 따르면 수익 예측에 대한 우리의 접근 방식은 "시장 점유율"이 아닌 "높은 잠재 고객 및 판매 자신감"이어야 한다.

 

스타트업 투자 개요

하드웨어

 

순이익이 발생할 때까지 총 자본 – 3년 차

투자 스냅샷

 

투자 하이라이트

 

시장 규모와 투자 요건을 고려할 때 모든 투자자에게 상당한 ROI를 제공한다. 타임라인은 최대 2분기까지 다를 수 있다.

 

 

1년차 이정표기존 하드웨어 및 자율 시스템 소프트웨어 프로토타입 및 NDPU 프로토타입에서 시장에 출시할 준비가 된 이상 감지 및 추천 시스템 소프트웨어

2년 차의 이정표기존 및 맞춤형 하드웨어의 시장 출시 준비가 완료된 자율 시스템 및 맞춤형 소프트웨어와 함께 고객이 사용할 수 있는 NDPU

 

투자 결과물 타임라인

 

가격

기존 하드웨어 가속기의 소프트웨어 

 

맞춤형 하드웨어 가속기의 소프트웨어 

 반복되지 않는 엔지니어링 비용을 고객에게 부담할 계획이다. 이것은 NRE 오버헤드를 줄이기 위해 공유 웨이퍼에서 더 작은 배치를 실행함으로써 가능하다.

 

예상 손익 

 

예상 현금 흐름 

 

예상 대차대조표 

 

예상 순자산 

 

직원 성장 

마케팅 계획

고유 판매 포인트          

-복잡한 데이터 오케스트레이션 및 전력 소비에 대한 필요성 감소... 따라서 전체 비용 절감

-수직 확장 증가, 수평 확장 감소데이터 샤딩/캐싱 완화

-더 정확하고 사람과 같은 상호 운용성

-인공 일반 지능의 새로운 물결 이용

 

핵심 가치

비용과 에너지 소비를 줄이기 위해 "코드 대 회로"로 설계된 효율적이고 지능적인 AI 시스템.

우리의 타겟 청중은 두 가지이다. 첫째, AI 컴퓨팅에서 데이터가 지속적으로 증가하는 개체는 인간과 유사한 AI 소프트웨어와 칩의 속도 및 압축 기술의 이점을 통해 고객이 컴퓨팅 비용을 줄일 수 있다. 둘째, 고급 인공지능을 찾는 사람들은 우리 칩의 학습 알고리즘의 이점을 얻는다. 그렇지 않으면 기존 소프트웨어나 하드웨어만으로는 실질적으로 구현되지 않는다.

데이터가 증가하고 사고의 패러다임은 더 적절한 수학 논리로 트랜지스터를 재설계하는 대신 더 많은 하드웨어를 추가하거나 광범위한 컴퓨팅 소프트웨어를 확장하는 것이다. 트랜지스터당 더 많은 정보를 처리하여 정보를 압축하고 연결하는 지능을 해결한다.

 

상용화 접근

2년차와 3년차에 우리는 두 가지 시장을 목표로 한다.

 

이상 탐지 및 추천 엔진.

대상 클라이언트로는 HP, Cisco, NASA, DOE, ZF, Siemens 등이 있다. 4년차에는 고객이 정부, Rivien, Lucid, Waymo를 포함하는 자율 시스템/에이전트의 추가 목표 시장으로 확장하고 Standard Chartered, Blackrock, Fidelity, Dell IBM과 같은 고객으로 기존 시장을 확장한다.

5년차에는 Hanson Robotics, Boston Dynamics와 같은 고객과 함께 자율 로봇 시장으로 확장한다. Amazon, Tesla, Meta, Netflix, Microsoft AWS와 같은 고객으로 기존 시장을 확장한다. 제품은 보다 지능적이고 모듈화된 비용 효율적이고 리소스 효율적인 AI로 포지셔닝된다.

우리의 GTM 전략에는 "판매 대상" "판매를 통해 판매"라는 두 가지 주요 접근 방식이 있다.

 

당사 영업팀은 Cisco, HP, Sambanova, Graphcore 등과 같은 파트너와 협력하여 고객에게 솔루션을 스택으로 판매할 것이다. 또한 소매, 의료, 정부, 은행, 석유 및 가스 등과 같은 특정 산업을 직접 대상으로 하는 "판매 대상" 접근 방식을 통해 솔루션을 추진할 것이다. 팀으로서 우리는 분기당 목표로 하는 최대 설치 수가 각 솔루션에 대해 분기당 15개를 넘지 않는다는 점을 감안할 때 두 접근 방식 모두 결과를 가져올 것이라고 확신한다.

 

8명의 수석 영업 전문가로 구성된 팀이다. 이것은 하이테크 산업에서 매우 보수적인 판매 목표이며, 특히 이러한 유형의 초고급 사용자 정의 솔루션에 대해 우리의 가격이 더 낮을 것이라는 점을 감안할 때 그렇다.

 

시장 기회 검증

 

판매 전략

 

Simulli B2B 모델을 사용한다. 선별된 고객과 함께 유료 파일럿을 통해 세 가지 소프트웨어 API를 개발할 계획이다. 이상 및 추천 API는 기존 하드웨어(CPU 또는 기존 가속기)에서 실행하기 위해 $250,000의 정액 요금으로 라이선스가 부여된다. 기능과 성능이 향상됨에 따라 3년차에 $500,000로 증가했다. 자율 시스템 API 라이선스의 가격은 $750,000이다.

또한 현재 논의 중인 공동 합의 가격에 따라 엄선된 하드웨어 가속기(Sambanova, Cerebras, Graphcore, HP Cray, Intel Gaudi2)와 공동 판매할 계획이다. 이 기간 동안 기존 API보다 더 많은 성능 향상을 원하는 고객을 위해 NDPU MPMC 가속기에 대한 유료 파일럿이 시작된다.

반복되지 않는 엔지니어링 비용을 고객에게 부담하고 고객 액셀러레이터를 사용하여 API 라이선스 요금에 합당한 추가 요금을 추가합니다. 변칙 시스템을 $750,000로 가져옴. 그리고 자율 시스템은 100만 달러에 달한다. 이것은 NRE 오버헤드를 줄이기 위해 공유 웨이퍼에서 더 작은 배치를 실행함으로써 가능하다.

MPMC는 서비스 요금으로 TrueAGI용으로 개발될 예정이며 TrueAGI 소프트웨어와의 공동 판매 전략이 채택될 예정이다. 일부 클라우드 인스턴스 인프라는 4년차에 시간당 $1.99의 가격으로 기존 소프트웨어와 맞춤형 가속기 모두에 제공될 예정이다. AGI 마더보드 및 소프트웨어 제품군(AKA – 슈퍼 인텔리전스 플랫폼)의 가격은 250만 달러이며 업계 리더 및 정부 기관에 판매할 예정이다.

 

생산 방식

우리는 반복되지 않는 엔지니어링 비용을 고객에게 오프로드할 계획이며 고객 액셀러레이터를 통해 API 라이선스 요금에 합당한 추가 요금이 추가된다. 생산을 위한 중요한 RTL 및 컴파일러와 함께 제품이 준비되면 Simuli 팀은 광범위한 논의를 거쳐 Global Chip AI Chip과 같은 파트너와 구두 파트너십에 동의한 TSMC와 협력하기 시작할 것이다.

이 선수들은 완전한 생산을 위한 마스크뿐만 아니라 테스트 칩을 만드는 전문 지식을 가지고 있다. 그들은 또한 지정된 위치로 제품의 테스트, 포장 및 배송을 수행하여 업계의 턴키 공급업체 역할을 하며 Simuli에도 그렇게 할 것이다. 당사의 소프트웨어는 가장 큰 산업 표준 기능이 충족되고 기능과 성능이 계속 성장할 때 구축 및 배송된다. 기존 고객과 함께 지속적으로 성장하고 새로운 시장에 진출하면서 이익을 얻는다.

 

IP 평가 및 위험 완화

 

 

IP 평가는 근사치이다. 값은 보수적이며 초기 비용을 보여준다. 일부는 완전한 판매 및 일부 영구 로열티일 수 있다.

NDPU AGI MB 특허는 2023년 상반기에 제출될 예정이다. 생산 또는 사업이 실패하는 경우 재앙적인 시나리오에서 투자자는 여전히 특허 판매 및 영구 로열티 혜택을 누릴 수 있다. 우리는 주요 업체들과 수익성 있는 계약을 체결해야 하며, 이는 대부분 일어날 것이다.

맞춤형 소프트웨어 특허는 2023년과 2024년에 제출될 예정이다. AGI에 상당한 관심과 수요가 있다는 점을 감안할 때 이러한 특허에도 동일하게 적용된다.

실패 비용의 완화. 생성된 특허는 재정적 실패로부터 보호하므로 투자자와 주주에게 완화를 제공한다.

 

키 포인트

AGI 및 혁신에 대한 약속

Simuli로서 우리의 주요 약속은 우리의 반도체 및 소프트웨어 제품군이 포함된 강력하고 윤리적이며 자비로운 인공 일반 지능 제품군을 구축하는 것이다.

 

고객 및 생태계에 집중

우리는 업계, 고객 및 주변 생태계의 불타는 요구에 집중할 것이다. 우리의 제품 로드맵은 이 초점을 기반으로 파생된다. 우리는 시간과 함께 계속 날카롭게 발전할 것이다.

 

커뮤니티 빌딩

우리 성공의 핵심 부분은 강력하고 견고한 연구원 및 개발자 커뮤니티가 될 것이다. 우리는 그들과 관계를 맺고 우리의 사용 사례가 산업 요구에 적합하고 우리 솔루션이 포지셔닝 및 판매를 시작하기 전에 잘 제작되고 테스트되었는지 확인한다.

 

가치 파트너십 및 제휴

우리는 기술 생태계의 주요 제휴 없이는 배포 및 확장할 수 없다는 것을 알고 있다. 여기에는 OEM, , 제조업체, 채널 파트너, 클라우드 플레이어 등과의 비즈니스 파트너십이 포함된다. Intel, Nvidia AMD와 같은 인식된 경쟁업체도 마찬가지이다. 생태계와 건강한 협력관계를 구축하겠다.

 

세계 관계 영역

우리의 전략적, 전술적, 거래적 관계는 항상 미국과 검증된 동맹국에 대한 약속에 의해 규율될 것이다. 우리는 브랜드 이미지를 보호하기 위해 모든 회색 영역을 피한다.

 

시물라이 관리팀

우리 팀은 인공 일반 지능으로의 길을 닦는 동시에 최첨단 AI 방법을 혁신하고 있다우리는 비전과 오랜 성공의 역사를 가진 전문가를 이끌고 있다.

 

시물라이 기술 소개

보다 스마트하고 확장 가능한 미래를 위한 초지능 플랫폼

 

시물라이 가치 제안                                                                        

필요한 전체 리소스를 줄이고 에너지 소비를 줄이기 위해 "코드 대 회로"로 설계된 AI 시스템은 값비싼 데이터 오케스트레이션의 필요성을 줄이고 있다.

 

예상 실적

Simuli의 완전히 최적화된 AI는 인공지능 이니셔티브의 효율성을 높인다.

-AI 개발에 투자한 투자 수익 40% 증가

-실제로 배포하는 AI 이니셔티브 72% 증가

-복잡한 데이터 오케스트레이션 제거로 AI 예산 40% 절감

 

AI 관련 업계 문제의 근본 원인

고가의 하드웨어를 과도하게 사용하여 대규모 데이터 세트를 비효율적으로 병렬 처리

데이터 사전 처리를 위해 데이터 엔지니어링과 같은 복잡한 소프트웨어 오케스트레이션을 불가피하게 사용하여 비용이 크게 추가됨

"좁은 지능"을 구축하기 위해 확장하기 어렵고 값비싼 기술을 과도하게 사용

 

많은 $$$가 매우 적거나 전혀 가치가 없음

 

매직

당사의 모듈식 AI 솔루션 스택은 생물학적 학습을 시뮬레이션하여 "이전에는 없었던인간 수준의 지능을 생성한다.

고급 수학과 신경 과학의 원리를 기반으로 구축된 혁신적인 소프트웨어는 지저분한 데이터 흐름을 훌륭하고 이해하기 쉽게 만드는 확장 가능한 새로운 자율 시스템을 만든다.

기존 HW - CPU  GPU에 대한 상당한 AI 비용 효율성

맞춤형 HW 컴파일러는 기존 HW 플랫폼에서 상당한 자원 및 전력 절감을 가능하게 한다.

우리의 혁신적인 알고리즘은 설계상 확장 가능하고 사용자 친화적이므로 값비싼 데이터 오케스트레이션이 필요하지 않는다.

맞춤형 HW를 통한 기하급수적 이점 - 2024년 옵션

우리의 새로운 NDPU 칩은 초차원 컴퓨팅을 활용하여 엄청난 전력 절감과 더 안전하고 스마트한 AI 컴퓨팅을 가능하게 한다.

우리의 새로운 MPMC 칩은 떼 지능을 활용하여 대용량 데이터를 빠르게 처리한다.

 

제품 및 시장

HPE, Cisco, ZF Friedrichshafen, Hanson Robotics 등과 같은 고객을 위해 최적화된 하드웨어 가속기로 지원되는 맞춤형 소프트웨어 솔루션을 제공한다.

정부의료전자 상거래소셜 미디어소매석유 및 가스, IOT, 스마트 도시엔터테인먼트공급망로봇 공학 및 자율 에이전트의 업계 참여자들은 더 스마트하고 안전하며 확장 가능한 AI를 열망하고 있다규모에 맞게 구축된 AI를 제공한다.

 

제품

우리의 초지능 플랫폼은 확장 가능하고 효율적인 솔루션을 만든다.

AI 메모리에 장착된 이상 감지 기능으로 이상 값을 신속하게 식별한다스마트 도시에지 클라우드 컴퓨팅금융 등에 대한 애플리케이션은 효율성을 잃지 않고 정확성을 확보하면서 사용자 데이터로 확장할 수 있다.

우리의 추천 엔진은 고객이 자신을 아는 것보다 고객을 더 잘 이해한다. AI 메모리를 사용하면 컴퓨터 지원 설계엔터테인먼트 및 스마트 검색에 대한 보다 현실적인 접근이 가능하고 저렴해진다.

우리의 자율 시스템은 기존 AI보다 훨씬 더 효율적이다메모리 지원 기능을 통해 엘리트만을 위한 값비싼 AI는 과거의 일이다재교육 감소데이터 사전 처리 감소클라우드 시간 감소적응성 증가의사 결정 해석 용이성 및 학습 시간 단축.

AGI 마더보드는 우리의 모든 혁신과 기존 및 새로운 강력한 기술을 하나의 두뇌와 같은 컴퓨팅 플랫폼으로 통합한다로보틱스와 슈퍼컴퓨팅은 지능의 미래를 염두에 두고 설계된 하드웨어에 의해 가속화된다.

 

우리의 접근

Simuli 초차원 AI

초차원 벡터를 사용하므로 훨씬 적은 계산 리소스와 전력을 소비한다.

"차원의 축복"을 자연스럽고 저렴하게 사용하여 폭 넓은 지능으로 이어진다.

데이터를 "준비"하기 위해 복잡한 데이터 엔지니어링이 필요하지 않음

모델 결정을 해석하기 위해 복잡한 소프트웨어 엔지니어링이 필요하지 않음

연상 지능을 기반으로 한 초차원 학습 모델을 사용하여 더 적응력이 뛰어나다.

데이터 여정은 "복잡에서 단순"

"적은 비용으로 더 많은 작업 수행"

 

현재 최첨단 클래식 AI

행렬 곱셈을 사용하므로 훨씬 더 많은 계산 리소스와 전력을 소비한다.

좁은 지능으로 이어지는 "차원의 저주"의 제약

데이터를 "준비"하려면 복잡한 데이터 엔지니어링이 필요하다.

모델 결정을 해석하려면 복잡한 소프트웨어 엔지니어링이 필요하며 이 프로세스는 확장에 중요하다.

시스템이 성장함에 따라 리소스가 탐욕스럽고 적응하기 어려운 행렬 곱셈 기반 학습 모델(딥 러닝)을 사용한다.

데이터 여정은 "복잡함에서 더 복잡함에서 단순함"

"더 많은 작업 수행"

 

시뮬레이션

 

1

2

3

이상 감지

추천 엔진

자율 시스템

애드온 모듈

맞춤 애드온

완전 맞춤형 시스템

계층화된 탐지 수준

현실적인 추천 계층

교육이 더 빠르고 저렴

애플리케이션 전반에 걸쳐 향상된 용량

인간과 같은 능력

인간 수준의 능력보다 낫다

CPU/GPU

CPU/GPU

NDPU +/- MPMC

 

사용자 채택 및 시스템 수명과 함께 성장

 하나 이상의 소스에서 가져온 지저분한 데이터와 함께 작동한다.

 분석적 통찰은 의사 결정 방법을 설명한다.

모든 솔루션은 플러그 앤 플레이 방식으로 사용하기 쉽다.

 

솔루션 로드맵 - 투자자를 위한 설계 위험 제거

HW NRE 비용은 관심 있는 고객 및 파트너가 부담한다. Simuli는 아키텍처 개발에만 투자할 것이다.

 

제품 고유성

 

 

독특한 기능

우리의 초지능 플랫폼은 모든 수준의 혁신적인 소프트웨어를 맞춤형 하드웨어 통합 또는 맞춤형 하드웨어 자체와 결합한다이 플랫폼은 다양한 클라이언트 요구 사항을 충족하는 모듈식이다.

*우리의 새로운 플랫폼은 고급 수학을 사용하여 트랜지스터가 사용되는 방식을 재설계한다 —> 기존 HW에서 효율적인 가속기로 이어진다.

•곧 출시될 맞춤형 칩은 트랜지스터 밀도로 인해 지금까지 엔지니어링이 불가능했던 하드웨어 레이아웃이 독특하다고객이 선택할 수 있는 옵션이지만 필수는 아니다.

NDPU MPMC에 특화된 로직은 기존 칩의 행렬 곱셈 방식과 달리 첨단 방식으로 AI 지능을 높인다.

•소비자는 더 적은 비용으로 더 많은 인텔리전스를 제공하는 AI 플랫폼을 원하며인간과 같은 메모리 모듈로 AI를 구현하여 솔루션을 제공한다.

 

경쟁자들

 AI 소프트웨어 또는 AI 하드웨어 또는 컴파일러 팀과 같이 단일 분야에 집중하는 많은 플레이어

Simuli AI를 위한 순수한 최적화에 초점을 맞춘다는 점에서 독특하다.

"필요한 최적화 수단" — 소프트웨어하드웨어컴파일러 및 논리 프로그래밍 기술 사용

•가장 확장 가능한 시스템은 가장 효율적인 시스템이다. AI도 예외는 아니다.

 

 

AI 패러다임풍경&어디서나.....

AI 컴퓨터 기능

 

적은 비용으로 더 많은 작업 수행 - 하이퍼차원 컴퓨팅

 

HD 컴퓨팅 솔루션 SW & HW - Innovators

Simuli , Numenta

 

더 많은 것으로 더 많은 작업 수행 – 슈퍼컴퓨팅

다양한 SC 영역의 업계 리더

Cisco, HPE, Dell, IBM, Tesla, Rivien, Waymo, Penske, Rolls Royce, AWS, Google, Nvidia, Intel, ARM, Salesforce, Siemens, Microsoft,

Alphabet, Baidu, GM, Ford, Oracle, Deepmind, OpenAI, Qualcomm, AMD

 

로보틱스 SW  HW 플레이어

AMP Robotics, Skydio, Flyability, Q-Bot, Robotic Research, Boston Dynamics, Hanson Robotics, Xona,Shadow Robot, Clearpath,

Slamcore , ModalAI, Asirobots

적은 비용으로 적은 작업 수행 - 에지 컴퓨팅

AI HW 플레이어

Brainchip, Mythic AI, Wave, Via, Thinci, Groq, Hailo, SiMa, Esperanto, Luminous, Lightmatter,

Movidius, Habana, Rebellions, Flex Logic, Prophesee, Kinara, EdgeQ, Axiado, LeapMind, Axelera, Rain Neuromorphics, Moffett, NeuReality, eYs3D, Adapteva, Boulder, Ambient

 

더 적게 하고 더 많이 - 클래식 컴퓨팅

AI HW 플레이어

Graphcore, Sambanova, Cerebras, Brainchip, Mythic AI, Wave, Via, Thinci, Groq, Hailo, SiMa, Esperanto, Luminous,Lightmatter, Movidius,

Habana, Rebellions, Flex Logic, Prophesee, Kinara, EdgeQ, Axiado, LeapMind, Axelera, Rain Neuromorphics, Moffett, NeuReality, eYs3D,

Adapteva, Boulder, Ambient

추천 엔진 SW 플레이어

Optimizely, Evergage, Monetate, Sailthru, Dyamic Yield, Qubit, Adobe, Episerver, Vue, Crab, RichRelevance, Matej, Crossing Minds,

Recombee, Octane, Algolia, Kibo, Syte, AutoCAD, Creo, Autodesk, Solidworks, Oneshape, Catia

이상 탐지 SW 플레이어

Avora, Splunk Enterprise, Loom Systems, Elastic X-Pack, Anodot, Crunch Metrics, Weka Data Mining, Shogun, RapidMiner, Dataiku, Elki,

Sci-kit, Tibco, Symantec, SAS Institute, Flowmon Networks, Securonix, Trend Micro, Gurucul, Wipro, Rapid7, Aqueduct Technologies,

Logrhthm, Trustwave, Varonis, GreyCortex, Cynet, Guardian Anaytics

자율 시스템 SW 플레이어

CausaLens, Shield AI, AlgoLux, Osaro, Oceanit, Eduworks, Lucid, Eatron, Charles River, QinetiQ, Atkins, Brain Corp, Emerging Technology, Aptiv, Luminar, Pony, iXblue, Yokagawa

 

리소스 소비 - 하드웨어복잡한 데이터 오케스트레이션소프트웨어보안에너지 및 전체 비용

 

경쟁자 분석

상위 SW 경쟁업체 문제

•고유한 작업/데이터에 적응하기 어려운 협소한 시스템

•기존 솔루션을 작동시키는 데 필요한 수많은 복잡한 데이터 오케스트레이션 및 전 처리

•특정 하드웨어 시스템 흐름에 최적화되지 않아 비효율적이거나 정확성이 떨어짐

 

상위 HW 경쟁업체 문제

•복잡하고 고가의 시스템

•특화 소프트웨어가 부족하여 HW를 사악하고 엉성하게 사용함

•사용 사례와 산업 간의 최소한의 상호운용성

 

시물라이 경쟁 우위

-하드웨어 경쟁자는 공동 판매 파트너가 되고 소프트웨어 경쟁자는 기회 고객이 된다맞춤형 컴파일러, API 및 유연한 라이선싱을 통해 하드웨어 및 소프트웨어 측면 모두에서 캡처하고 개선한다.

-Simuli는 소프트웨어와 하드웨어 간의 관계를 재평가한다.

-다양한 가능한 하드웨어로 설계된 소프트웨어는 소프트웨어의 특수한 수학적 속성을 활용하여 트랜지스터가 더 열심히 작동하도록 한다한 가지 이상의 작업을 수행하는 소프트웨어.

-혁신적인 소프트웨어와 유연하게 작동하도록 재구성된 하드웨어.

-각 산업 사용 사례 내에서 성능에 대해 최대로 최적화된 맞춤형 하드웨어.

 

시장 진출 계획

2023: 파일럿 고객과 함께 초기 실행 가능한 제품 출시

2024: 제한된 고객 그룹 및 특수 칩으로 실험 및 개선

2026: 가속 성장 단계 및 전체 AGI 보드

 

이상적인 고객

확장 가능한 AI 솔루션이 필요한 크고 복잡한 데이터 소스가 있는 엔터프라이즈 비즈니스추천 엔진이상 탐지 및 자율 시스템에서 현재 AI 솔루션보다 더 효율적이고 지능적이며 안전해야 하는 엔터티. AI 디자인에서 효율성이 최우선인 사람들.

 

고객 확보

기술 및 소비자 대면 위치 모두에서 기업 의사 결정권자를 대상으로 하여 Simuli 솔루션을 사용할 수 있는 어포던스 기회를 만든다초기 단계에서 우리는 기존 고객의 AI 확장 문제를 직접 해결하는 데 집중하고 있다우리가 성장함에 따라 산업 전반의 표준을 능가하는 수평적 솔루션을 통해 다른 고객으로 확장할 것이다.

 

규모

초기 솔루션은 추천 AI 엔진에 중점을 둔다우리가 확장함에 따라 우리는 스마트 시티와 자율주행 AI 시장을 활용할 것이다. AI 메모리 모듈을 사용하면 고급 로봇 시장을 쉽게 채택할 수 있다.

 

로드맵

 

 

고객은 투자 및 효율성에 따라 카탈로그에서 항목을 선택할 수 있다.

요컨대 우리의 제품 로드맵은 고객에게 근본적으로 도움이 될 것이다.

-유익한 컴파일러 및 API 솔루션은 맞춤형 칩을 이끌 것이다.

-설치된 솔루션으로 맞춤형 칩을 쉽게 푸시할 수 있도록 하여 "주문 제작"하고 HW NRE 비용을 전가한다.

맞춤형 칩은 AI AGI로 변환하는 데 도움이 되는 AGI 보드를 위한 길을 열 것이다.

 

적은 $$ 투자상당한 $$$$ 출력 + 근본적인 혁신

 

시드 단계에 대한 자금 요구 사항

 

우리는 투자자를 위해 가능한 한 많은 위험을 제거하기 위해 여러 출처에서 자본을 조달하려고 시도하고 있다.

 

현재 상태성과 및 자금 사용

 

현재 상태

우리는 고객과 소통하기 시작했다고충을 해결하고 솔루션 파일럿을 공식화하고 있다.

업적

우리는 칩에 대한 특허를 획득했으며 클라이언트를 성공적으로 참여시켰다.

자금 사용

우리의 목표는 고객 판매를 통해 엔지니어링 급여마케팅 및 반복되지 않는 엔지니어링 비용을 오프로드하는 것이다.

2023년 말

일부 AI 사용 사례의 소프트웨어 솔루션

다중 수평 소프트웨어 솔루션하드웨어 프로토타입

소프트웨어 개발을 위한 엔지니어링 급여에 사용되는 자금

2024년 말

가속기 칩을 사용한 가속 소프트웨어 솔루션

산업 전반에서 사용할 수 있는 풀스택 솔루션

반복되지 않는 엔지니어링 비용 칩 제조 비용일부 판관비

2025년 말

전체 제품군 및 서비스 출시, AGI 보드 개발 시작

볼륨 칩 판매, AGI 마더보드 프로토타입

성장과 광범위한 채택을 가속화하기 위해 일부 자금이 필요할 수 있다.

 

논의희망

-팀 소개

-사업 계획

-재정 계획

-GTM 전략 및 잠재 고객

-희석되지 않은 자금원

-투자자를 위한 ROI

-투자자들의 출구전략

-특허 및 지적재산권 현황

-지적 재산 로드맵

-하드웨어 테이프아웃

info@simuli.ai     Simuli Inc.

 

 

 

 

 
Simuli Inc. 사업 계획, 일반 인공 지능, AGI 관련기사목록
PHOTO
1/6
광고
광고
광고
광고
광고
최신기사